Back to Search Start Over

A density result for doubly nonlinear operators in $ L^1 $.

Authors :
Collier, Timothy Allen
Hauer, Daniel
Source :
Discrete & Continuous Dynamical Systems - Series S; Apr2024, Vol. 17 Issue 4, p1-9, 9p
Publication Year :
2024

Abstract

The aim of this paper is to provide sufficient conditions implying that the effective domain $ D(A\phi) $ of an $ m $-accretive operator $ A\phi $ in $ L^1 $ is dense in $ L^1 $. Here, $ A\phi $ refers to the composition $ A\circ \phi $ in $ L^1 $ of the part $ A = (\partial\mathcal{E})_{\vert L^{1\cap \infty}} $ in $ L^{1\cap\infty} $ of the subgradient $ \partial\mathcal{E} $ in $ L^2 $ of a convex, proper, lower semicontinuous functional $ \mathcal{E} $ on $ L^2 $ and a continuous, strictly increasing function $ \phi $ on the real line $ \mathbb{R} $. To illustrate the role of the sufficient conditions, we apply our main result to the class of doubly nonlinear operators $ A\phi $, where $ A $ is a classical Leray-Lions operator. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19371632
Volume :
17
Issue :
4
Database :
Complementary Index
Journal :
Discrete & Continuous Dynamical Systems - Series S
Publication Type :
Academic Journal
Accession number :
177401642
Full Text :
https://doi.org/10.3934/dcdss.2024031