Back to Search
Start Over
A density result for doubly nonlinear operators in $ L^1 $.
- Source :
- Discrete & Continuous Dynamical Systems - Series S; Apr2024, Vol. 17 Issue 4, p1-9, 9p
- Publication Year :
- 2024
-
Abstract
- The aim of this paper is to provide sufficient conditions implying that the effective domain $ D(A\phi) $ of an $ m $-accretive operator $ A\phi $ in $ L^1 $ is dense in $ L^1 $. Here, $ A\phi $ refers to the composition $ A\circ \phi $ in $ L^1 $ of the part $ A = (\partial\mathcal{E})_{\vert L^{1\cap \infty}} $ in $ L^{1\cap\infty} $ of the subgradient $ \partial\mathcal{E} $ in $ L^2 $ of a convex, proper, lower semicontinuous functional $ \mathcal{E} $ on $ L^2 $ and a continuous, strictly increasing function $ \phi $ on the real line $ \mathbb{R} $. To illustrate the role of the sufficient conditions, we apply our main result to the class of doubly nonlinear operators $ A\phi $, where $ A $ is a classical Leray-Lions operator. [ABSTRACT FROM AUTHOR]
- Subjects :
- NONLINEAR operators
DENSITY
POROUS materials
Subjects
Details
- Language :
- English
- ISSN :
- 19371632
- Volume :
- 17
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Discrete & Continuous Dynamical Systems - Series S
- Publication Type :
- Academic Journal
- Accession number :
- 177401642
- Full Text :
- https://doi.org/10.3934/dcdss.2024031