Back to Search Start Over

The impact of precipitation changes on the safety of railway operations in China under the background of climate change.

Authors :
Jiang, Ying
Chen, Zhongyu
Wang, Yuhong
Gao, Jingjing
Zhang, Xiaomei
Hu, Ruoyu
Wu, Hao
Kuttippurath, Jayanarayanan
Zhu, Yali
Source :
Frontiers in Earth Science; 2024, p1-14, 14p
Publication Year :
2024

Abstract

Global climate change has intensified the water cycle, leading to frequent extreme precipitation events, posing a significant threat to railway infrastructure and safety operations. Based on the analysis of past and future precipitation changes in China, this study investigates the impact of climate change on railway safety operations. The study reveals the following findings: (1) Under the influence of the intensified East Asian summer monsoon and the northward shift of the subtropical high during the 2017-2021 compared to the 2012-2016, precipitation has significantly decreased (120 mm) in the regions south of the Yangtze River and South China, while it has increased (60 mm) in the regions from the eastern of Northwest China to the middle and lower reaches of Yangtze River; The operational precipitation risk has decreased for Urumqi, Lanzhou, Qinghai-Tibet Group, Xi'an, and Wuhan railway bureaus (abbreviated as Bureau), while it has increased for Nanchang, Chengdu, Zhengzhou, Shanghai, and Shenyang Bureaus. Particularly noteworthy is that despite a decrease in total annual precipitation for Nanchang bureau (15.3 mm/a), the frequency of intense precipitation events has increased, leading to an increased operational precipitation risk. (2) During the 21[sup st] century, under high (SSP5-8.5), medium (SSP2-4.5), and low (SSP1-2.6) forcing scenarios, all projections indicate that most of the China will experience an increasing trend in precipitation, with significant increases in precipitation observed in the regions south of the Yangtze Rive, South and Southwest China. The higher the greenhouse gas emissions, the more pronounced the increasing trend in precipitation. (3) Compared to the 20[sup th] century, under high (SSP5-8.5), medium (SSP2-4.5), and low (SSP1-2.6) forcing scenarios, all projections indicate that the total annual precipitation hours, railway inspection, speed limit, and closure risk hours have all increased on a national scale during the 21[sup st] century. The operational precipitation risk for railways has also increased. The higher the alert level for railway precipitation (precipitation < inspection < speed limit < closure), the higher the proportion of risk hours compared to the 20th century. By the late 21[sup st] century, the railway inspection, speed limit, and closure risk hours have increased by 175%, 463%, and 647%, respectively, compared to the 20[sup th] century. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22966463
Database :
Complementary Index
Journal :
Frontiers in Earth Science
Publication Type :
Academic Journal
Accession number :
177474174
Full Text :
https://doi.org/10.3389/feart.2024.1319736