Back to Search Start Over

Roll‐to‐Roll Compatible Topochemical Wetting Control for Metamaterial Printing.

Authors :
Donie, Yidenekachew J.
Ramamurthy, Maya
Chakraborty, Rohan D.
Francis, Lorraine F.
Frisbie, C. Daniel
Ferry, Vivian E.
Source :
Advanced Optical Materials; 5/28/2024, Vol. 12 Issue 15, p1-10, 10p
Publication Year :
2024

Abstract

The widespread utilization of metamaterials, despite their immense transformative potential, faces challenges regarding scalability in mass production. To address these limitations, an additive method that leverages liquid inks and selective wetting to produce scalable and cost‐effective metamaterials is presented. UV‐based imprinting lithography is utilized to fabricate surface energy‐modulated patterns, enabling precise solution patterning. This approach, unlike conventional UV‐based imprinting lithography, not only accurately produces the negative replica of the stamp topography during UV‐induced crosslinking but also transfers a hydrophobic layer onto the raised surfaces of the imprinted hydrophilic layer, resulting in 3D shapes with spatially modulated surface energy. In the second process step, a functional ink is dragged over the patterned substrate where it dewets to fill the hydrophilic recesses. This innovative process enables high‐speed metamaterial production, with ink deposition speeds up to 12 m min−1. The method accommodates a wide range of inks, including metals, dielectrics, and semiconductors, providing meticulous control over vertical structures such as pattern thickness and hetero‐multilayer formation. Additionally, it offers flexibility in creating metamaterials on free‐standing ultra‐thin sheets, introducing desirable attributes like foldability and disposability. The effectiveness of this approach is validated through the fabrication and characterization of metallic metamaterials. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21951071
Volume :
12
Issue :
15
Database :
Complementary Index
Journal :
Advanced Optical Materials
Publication Type :
Academic Journal
Accession number :
177511912
Full Text :
https://doi.org/10.1002/adom.202302785