Back to Search
Start Over
Addressing the Non-Stationarity and Complexity of Time Series Data for Long-Term Forecasts.
- Source :
- Applied Sciences (2076-3417); Jun2024, Vol. 14 Issue 11, p4436, 15p
- Publication Year :
- 2024
-
Abstract
- Real-life time series datasets exhibit complications that hinder the study of time series forecasting (TSF). These datasets inherently exhibit non-stationarity as their distributions vary over time. Furthermore, the intricate inter- and intra-series relationships among data points pose challenges for modeling. Many existing TSF models overlook one or both of these issues, resulting in inaccurate forecasts. This study proposes a novel TSF model designed to address the challenges posed by real-life data, delivering accurate forecasts in both multivariate and univariate settings. First, we propose methods termed "weak-stationarizing" and "non-stationarity restoring" to mitigate distributional shift. These methods enable the removal and restoration of non-stationary components from individual data points as needed. Second, we utilize the spectral decomposition of weak-stationary time series to extract informative features for forecasting. To learn features from the spectral decomposition of weak-stationary time series, we exploit a mixer architecture to find inter- and intra-series dependencies from the unraveled representation of the overall time series. To ensure the efficacy of our model, we conduct comparative evaluations against state-of-the-art models using six real-world datasets spanning diverse fields. Across each dataset, our model consistently outperforms or yields comparable results to existing models. [ABSTRACT FROM AUTHOR]
- Subjects :
- TIME complexity
Subjects
Details
- Language :
- English
- ISSN :
- 20763417
- Volume :
- 14
- Issue :
- 11
- Database :
- Complementary Index
- Journal :
- Applied Sciences (2076-3417)
- Publication Type :
- Academic Journal
- Accession number :
- 177852748
- Full Text :
- https://doi.org/10.3390/app14114436