Back to Search Start Over

Design and Optimization of Coil for Transcutaneous Energy Transmission System.

Authors :
Wu, Ruiming
Li, Haonan
Chen, Jiangyu
Le, Qi
Wang, Lijun
Huang, Feng
Fu, Yang
Source :
Electronics (2079-9292); Jun2024, Vol. 13 Issue 11, p2157, 17p
Publication Year :
2024

Abstract

This article presents a coil couple-based transcutaneous energy transmission system (TETS) for wirelessly powering implanted artificial hearts. In the TETS, the performance of the system is commonly affected by the change in the position of the coupling coils, which are placed inside and outside the skin. However, to some extent, the influence of coupling efficiency caused by misalignment can be reduced by optimizing the coil. Thus, different types of coils are designed in this paper for comparison. It has been found that the curved coil better fits the surface of the skin and provides better performance for the TETS. Various types of curved coils have been designed in response to observed bending deformations, dislocations, and other coupling variations in the curved coil couple. The numerical model of the TETS is established to analyze the effects of the different types of coils. Subsequently, a series of experiments are designed to evaluate the resilience to misalignment and to verify the heating of the coil under conditions of severe coupling misalignment. The results indicated that, in the case of misalignment of the coils used in artificial hearts, the curved transmission coil demonstrated superior efficiency and lower temperature rise compared to the planar coil. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799292
Volume :
13
Issue :
11
Database :
Complementary Index
Journal :
Electronics (2079-9292)
Publication Type :
Academic Journal
Accession number :
177857272
Full Text :
https://doi.org/10.3390/electronics13112157