Back to Search Start Over

UAV Path Planning Based on Random Obstacle Training and Linear Soft Update of DRL in Dense Urban Environment.

Authors :
Zhu, Yanfei
Tan, Yingjie
Chen, Yongfa
Chen, Liudan
Lee, Kwang Y.
Source :
Energies (19961073); Jun2024, Vol. 17 Issue 11, p2762, 19p
Publication Year :
2024

Abstract

The three-dimensional (3D) path planning problem of an Unmanned Aerial Vehicle (UAV) considering the effect of environmental wind in a dense city is investigated in this paper. The mission of the UAV is to fly from its initial position to its destination while ensuring safe flight. The dense obstacle avoidance and the energy consumption in 3D space need to be considered during the mission, which are often ignored in common studies. To solve these problems, an improved Deep Reinforcement Learning (DRL) path planning algorithm based on Double Deep Q-Network (DDQN) is proposed in this paper. Among the algorithms, the random obstacle training method is first proposed to make the algorithm consider various flight scenarios more globally and comprehensively and improve the algorithm's robustness and adaptability. Then, the linear soft update strategy is employed to realize the smooth neural network parameter update, which enhances the stability and convergence of the training. In addition, the wind disturbances are integrated into the energy consumption model and reward function, which can effectively describe the wind disturbances during the UAV mission to achieve the minimum drag flight. To prevent the neural network from interfering with training failures, the meritocracy mechanism is proposed to enhance the algorithm's stability. The effectiveness and applicability of the proposed method are verified through simulation analysis and comparative studies. The UAV based on this algorithm has good autonomy and adaptability, which provides a new way to solve the UAV path planning problem in dense urban scenes. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
17
Issue :
11
Database :
Complementary Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
177858768
Full Text :
https://doi.org/10.3390/en17112762