Back to Search
Start Over
Genome-wide screening of m6A profiling of cutaneous wound healing in diabetic mice.
- Source :
- Molecular Biology Reports; 1/22/2024, Vol. 51 Issue 1, p1-13, 13p
- Publication Year :
- 2024
-
Abstract
- Objective: Impaired wound healing in diabetes mellitus (DM) is a major health burden on patients, their families, and society. The present study aimed to systematically profile the m6A modification landscape in cutaneous wounds in a diabetic mouse model. Approach: Diabetes was induced in mice through a single intraperitoneal injection of streptozotocin (STZ); a single intraperitoneal injection of PBS was made in control mice for comparisons. Both groups then received an 8-mm diameter, full-thickness dorsal body wound with a biopsy punch. Five days after wound surgery, western blot analysis of harvested wound tissues from both groups was used to assess the expression of m6A-related enzymes. Genome-wide profiling of m6A-tagged transcripts was performed through MeRIP-seq and RNA-seq. Results: ALKBH5, an m6A eraser, was significantly upregulated, while METTL3, METTL14, and WTAP, m6A writers, were markedly downregulated in the diabetic wounds. Additionally, a total of 1335 m6A peaks were differentially expressed in MeRIP-seq and RNA-seq analyses, with 558 upregulated and 777 downregulated peaks. Finally, there was hypomethylated and hypermethylated differentiation at the gene and transcript levels. Innovation: The present study was the first to reveal the m6A landscape in diabetic wounds in an animal model. Conclusion: This study, by deeply analyzing the role of m6A modifications in diabetic wound healing, provides new insights and understanding into the molecular mechanisms of diabetic wound healing. Future research could further explore how m6A modifications regulate the wound healing process, thereby offering new potential targets for the treatment of diabetic wounds. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 03014851
- Volume :
- 51
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- Molecular Biology Reports
- Publication Type :
- Academic Journal
- Accession number :
- 177878633
- Full Text :
- https://doi.org/10.1007/s11033-023-09089-7