Back to Search Start Over

BI-2865, a pan-KRAS inhibitor, reverses the P-glycoprotein induced multidrug resistance in vitro and in vivo.

Authors :
Yang, Qihong
To, Kenneth Kin Wah
Hu, Guilin
Fu, Kai
Yang, Chuan
Zhu, Shuangli
Pan, Can
Wang, Fang
Luo, Kewang
Fu, Liwu
Source :
Cell Communication & Signaling; 6/13/2024, Vol. 22 Issue 1, p1-15, 15p
Publication Year :
2024

Abstract

Background: Multidrug resistance (MDR) limits successful cancer chemotherapy. P-glycoprotein (P-gp), BCRP and MRP1 are the key triggers of MDR. Unfortunately, no MDR modulator was approved by FDA to date. Here, we will investigate the effect of BI-2865, a pan-KRAS inhibitor, on reversing MDR induced by P-gp, BCRP and MRP1 in vitro and in vivo, and its reversal mechanisms will be explored. Methods: The cytotoxicity of BI-2865 and its MDR removal effect in vitro were tested by MTT assays, and the corresponding reversal function in vivo was assessed through the P-gp mediated KBv200 xenografts in mice. BI-2865 induced alterations of drug discharge and reservation in cells were estimated by experiments of Flow cytometry with fluorescent doxorubicin, and the chemo-drug accumulation in xenografts' tumor were analyzed through LC-MS. Mechanisms of BI-2865 inhibiting P-gp substrate's efflux were analyzed through the vanadate-sensitive ATPase assay, [<superscript>125</superscript>I]-IAAP-photolabeling assay and computer molecular docking. The effects of BI-2865 on P-gp expression and KRAS-downstream signaling were detected via Western blotting, Flow cytometry and/or qRT-PCR. Subcellular localization of P-gp was visualized by Immunofluorescence. Results: We found BI-2865 notably fortified response of P-gp-driven MDR cancer cells to the administration of chemo-drugs including paclitaxel, vincristine and doxorubicin, while such an effect was not observed in their parental sensitive cells and BCRP or MRP1-driven MDR cells. Importantly, the mice vivo combination study has verified that BI-2865 effectively improved the anti-tumor action of paclitaxel without toxic injury. In mechanism, BI-2865 prompted doxorubicin accumulating in carcinoma cells by directly blocking the efflux function of P-gp, which more specifically, was achieved by BI-2865 competitively binding to the drug-binding sites of P-gp. What's more, at the effective MDR reversal concentrations, BI-2865 neither varied the expression and location of P-gp nor reduced its downstream AKT or ERK1/2 signaling activity. Conclusions: This study uncovered a new application of BI-2865 as a MDR modulator, which might be used to effectively, safely and specifically improve chemotherapeutic efficacy in the clinical P-gp mediated MDR refractory cancers. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1478811X
Volume :
22
Issue :
1
Database :
Complementary Index
Journal :
Cell Communication & Signaling
Publication Type :
Academic Journal
Accession number :
177880571
Full Text :
https://doi.org/10.1186/s12964-024-01698-4