Back to Search
Start Over
Block-transitive 3-(v, k, 1) designs on exceptional groups of Lie type.
- Source :
- Journal of Algebraic Combinatorics; Jun2024, Vol. 59 Issue 4, p879-897, 19p
- Publication Year :
- 2024
-
Abstract
- Let D be a non-trivial G-block-transitive 3-(v, k, 1) design, where T ≤ G ≤ Aut (T) for some finite non-abelian simple group T. It is proved that if T is a simple exceptional group of Lie type, then T is either the Suzuki group 2 B 2 (q) or G 2 (q) . Furthermore, if T = 2 B 2 (q) then the design D has parameters v = q 2 + 1 and k = q + 1 , and so D is an inverse plane of order q, and if T = G 2 (q) then the point stabilizer in T is either SL 3 (q). 2 or SU 3 (q). 2 , and the parameter k satisfies very restricted conditions. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09259899
- Volume :
- 59
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Journal of Algebraic Combinatorics
- Publication Type :
- Academic Journal
- Accession number :
- 177895376
- Full Text :
- https://doi.org/10.1007/s10801-024-01315-0