Back to Search Start Over

Biomass Allocation of China's Forests as Indicated by a Literature-Based Allometry Database.

Authors :
Hao, Yajie
Sun, Zhongyi
Tan, Zheng-Hong
Source :
Forests (19994907); Jun2024, Vol. 15 Issue 6, p942, 19p
Publication Year :
2024

Abstract

Allometry reflects the quantitative relationship between the allocation of resources among different organs. Understanding patterns of forest biomass allocation is critical to comprehending global climate change and the response of terrestrial vegetation to climate change. By collecting and reorganizing the existing allometric models of tree species in China, we established a database containing over 3000 empirical allometric models. Based on this database, we analyzed the model parameters and the effect of climate on forest biomass allocation under the context of 'optimal allocation theory'. We showed that (1) the average and median exponent of power functions for above-ground biomass were 2.344 and 2.385, respectively, which significantly deviated from the theoretical prediction of 2.667 by metabolic theory (p < 0.01). (2) The parameters of the allometric model were not constant, and not significantly correlated with temperature, precipitation, latitude, and elevation (p > 0.05), but were more closely related to individual size (p < 0.01). (3) Among different types of forests, the proportion of above-ground biomass in tropical rainforests and subtropical evergreen rainforests was significantly higher than that in temperate forests and boreal forests (p < 0.05). The proportion of trunk and branch biomass allocated to tropical rainforest was significantly higher than that of boreal forest (p < 0.05), while the proportion of root and leaf biomass allocated to tropical rainforest was significantly lower than that of boreal forest (p < 0.05). (4) The abiotic environment plays a crucial role in determining the allocation of plant biomass. The ratio of below-ground/above-ground biomass is significantly and negatively correlated with both temperature and rainfall (p < 0.01), and significantly and positively correlated with altitude and latitude (p < 0.01). This means that as temperature and rainfall increase, there is a decrease in the amount of biomass allocated to below-ground structures such as roots. On the other hand, as altitude and latitude increase, there is an increase in below-ground biomass allocation. These findings highlight the importance of considering the influence of abiotic factors on plant growth and development. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19994907
Volume :
15
Issue :
6
Database :
Complementary Index
Journal :
Forests (19994907)
Publication Type :
Academic Journal
Accession number :
178156153
Full Text :
https://doi.org/10.3390/f15060942