Back to Search
Start Over
Completing the Ba–As Compositional Space: Synthesis and Characterization of Three New Binary Zintl Arsenides, Ba 3 As 4 , Ba 5 As 4 , and Ba 16 As 11.
- Source :
- Crystals (2073-4352); Jun2024, Vol. 14 Issue 6, p570, 15p
- Publication Year :
- 2024
-
Abstract
- Three novel binary barium arsenides, Ba<subscript>3</subscript>As<subscript>4</subscript>, Ba<subscript>5</subscript>As<subscript>4</subscript>, and Ba<subscript>16</subscript>As<subscript>11</subscript>, were synthesized and their crystal and electronic structures were investigated. Structural data collected via the single-crystal X-ray diffraction method indicate that the anionic substructures of all three novel compounds are composed of structural motifs based on the homoatomic As–As contacts, with [As<subscript>2</subscript>]<superscript>4−</superscript> dimers found in Ba<subscript>5</subscript>As<subscript>4</subscript> and Ba<subscript>16</subscript>As<subscript>11</subscript>, and an [As<subscript>4</subscript>]<superscript>6−</superscript> tetramer found in Ba<subscript>3</subscript>As<subscript>4</subscript>. Ba<subscript>3</subscript>As<subscript>4</subscript> and Ba<subscript>5</subscript>As<subscript>4</subscript> crystallize in the orthorhombic crystal system—with the non-centrosymmetric space group Fdd2 (a = 15.3680(20) Å, b = 18.7550(30) Å, c = 6.2816(10) Å) for the former, and the centrosymmetric space group Cmce (a = 16.8820(30) Å, b = 8.5391(16) Å, and c = 8.6127(16) Å) for the latter—adopting Eu<subscript>3</subscript>As<subscript>4</subscript> and Eu<subscript>5</subscript>As<subscript>4</subscript> structure types, respectively. The heavily disordered Ba<subscript>16</subscript>As<subscript>11</subscript> structure was solved in the tetragonal crystal system with the space group P 4 ¯ 2 1 m (a = 12.8944(12) Å and c = 11.8141(17) Å). The Zintl concept can be applied to each of these materials as follows: Ba<subscript>3</subscript>As<subscript>4</subscript> = (Ba<superscript>2+</superscript>)<subscript>3</subscript>[As<subscript>4</subscript>]<superscript>6−</superscript>, Ba<subscript>5</subscript>As<subscript>4</subscript> = (Ba<superscript>2+</superscript>)<subscript>5</subscript>(As<superscript>3−</superscript>)<subscript>2</subscript>[As<subscript>2</subscript>]<superscript>4−</superscript>, and 2 × Ba<subscript>16</subscript>As<subscript>11</subscript> = (Ba<superscript>2+</superscript>)<subscript>32</subscript>(As<superscript>3−</superscript>) ≈ <subscript>20</subscript>[As<subscript>2</subscript>]<superscript>4−</superscript> ≈ 1, pointing to the charge-balanced nature of these compounds. Electronic structure calculations indicate narrow bandgap semiconducting behavior, with calculated bandgaps of 0.47 eV for Ba<subscript>3</subscript>As<subscript>4</subscript>, 0.34 eV for Ba<subscript>5</subscript>As<subscript>4</subscript>, and 0.33 eV for Ba<subscript>16</subscript>As<subscript>11</subscript>. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20734352
- Volume :
- 14
- Issue :
- 6
- Database :
- Complementary Index
- Journal :
- Crystals (2073-4352)
- Publication Type :
- Academic Journal
- Accession number :
- 178157853
- Full Text :
- https://doi.org/10.3390/cryst14060570