Back to Search Start Over

Cross-Validation Visualized: A Narrative Guide to Advanced Methods.

Authors :
Allgaier, Johannes
Pryss, RĂ¼diger
Source :
Machine Learning & Knowledge Extraction; Jun2024, Vol. 6 Issue 2, p1378-1388, 11p
Publication Year :
2024

Abstract

This study delves into the multifaceted nature of cross-validation (CV) techniques in machine learning model evaluation and selection, underscoring the challenge of choosing the most appropriate method due to the plethora of available variants. It aims to clarify and standardize terminology such as sets, groups, folds, and samples pivotal in the CV domain, and introduces an exhaustive compilation of advanced CV methods like leave-one-out, leave-p-out, Monte Carlo, grouped, stratified, and time-split CV within a hold-out CV framework. Through graphical representations, the paper enhances the comprehension of these methodologies, facilitating more informed decision making for practitioners. It further explores the synergy between different CV strategies and advocates for a unified approach to reporting model performance by consolidating essential metrics. The paper culminates in a comprehensive overview of the CV techniques discussed, illustrated with practical examples, offering valuable insights for both novice and experienced researchers in the field. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
25044990
Volume :
6
Issue :
2
Database :
Complementary Index
Journal :
Machine Learning & Knowledge Extraction
Publication Type :
Academic Journal
Accession number :
178185661
Full Text :
https://doi.org/10.3390/make6020065