Back to Search Start Over

Federated Learning for Maritime Environments: Use Cases, Experimental Results, and Open Issues.

Authors :
Giannopoulos, Anastasios
Gkonis, Panagiotis
Bithas, Petros
Nomikos, Nikolaos
Kalafatelis, Alexandros
Trakadas, Panagiotis
Source :
Journal of Marine Science & Engineering; Jun2024, Vol. 12 Issue 6, p1034, 20p
Publication Year :
2024

Abstract

Maritime transportation is crucial for global trade and responsible for the majority of goods movement worldwide. The optimization of maritime operations is challenged by the complexity and heterogeneity of maritime nodes. This paper presents the emerging deployment of federated learning (FL) in maritime environments to address these challenges. FL enables decentralized machine learning model training, ensuring data privacy and security while overcoming issues associated with non-i.i.d. data. This paper explores various maritime use cases, including fuel consumption reduction, predictive maintenance, and just-in-time arrival. Experimental results using real datasets demonstrate the superiority of FL in predicting the fuel consumption of large cargo ships in terms of accuracy and spatiotemporal complexity over traditional collaborative machine learning approaches. The findings indicate that FL can significantly improve the performance of fuel consumption models in a collaborative way, while ensuring data privacy preservation and no data transmission during the learning process. Finally, this paper discusses open issues and future research directions necessary for the widespread adoption of FL in maritime transportation and settings. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20771312
Volume :
12
Issue :
6
Database :
Complementary Index
Journal :
Journal of Marine Science & Engineering
Publication Type :
Academic Journal
Accession number :
178187577
Full Text :
https://doi.org/10.3390/jmse12061034