Back to Search Start Over

Ethereum Phishing Scam Detection Based on Data Augmentation Method and Hybrid Graph Neural Network Model.

Authors :
Chen, Zhen
Liu, Sheng-Zheng
Huang, Jia
Xiu, Yu-Han
Zhang, Hao
Long, Hai-Xia
Source :
Sensors (14248220); Jun2024, Vol. 24 Issue 12, p4022, 17p
Publication Year :
2024

Abstract

The rapid advancement of blockchain technology has fueled the prosperity of the cryptocurrency market. Unfortunately, it has also facilitated certain criminal activities, particularly the increasing issue of phishing scams on blockchain platforms such as Ethereum. Consequently, developing an efficient phishing detection system is critical for ensuring the security and reliability of cryptocurrency transactions. However, existing methods have shortcomings in dealing with sample imbalance and effective feature extraction. To address these issues, this study proposes an Ethereum phishing scam detection method based on DA-HGNN (Data Augmentation Method and Hybrid Graph Neural Network Model), validated by real Ethereum datasets to prove its effectiveness. Initially, basic node features consisting of 11 attributes were designed. This study applied a sliding window sampling method based on node transactions for data augmentation. Since phishing nodes often initiate numerous transactions, the augmented samples tended to balance. Subsequently, the Temporal Features Extraction Module employed Conv1D (One-Dimensional Convolutional neural network) and GRU-MHA (GRU-Multi-Head Attention) models to uncover intrinsic relationships between features from the time sequences and to mine adequate local features, culminating in the extraction of temporal features. The GAE (Graph Autoencoder) concept was then leveraged, with SAGEConv (Graph SAGE Convolution) as the encoder. In the SAGEConv reconstruction module, by reconstructing the relationships between transaction graph nodes, the structural features of the nodes were learned, obtaining reconstructed node embedding representations. Ultimately, phishing fraud nodes were further identified by integrating temporal features, basic features, and embedding representations. A real Ethereum dataset was collected for evaluation, and the DA-HGNN model achieved an AUC-ROC (Area Under the Receiver Operating Characteristic Curve) of 0.994, a Recall of 0.995, and an F1-score of 0.994, outperforming existing methods and baseline models. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
12
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
178190698
Full Text :
https://doi.org/10.3390/s24124022