Back to Search Start Over

A Deep Learning-Based Solar Power Generation Forecasting Method Applicable to Multiple Sites.

Authors :
Jang, Seon Young
Oh, Byung Tae
Oh, Eunsung
Source :
Sustainability (2071-1050); Jun2024, Vol. 16 Issue 12, p5240, 15p
Publication Year :
2024

Abstract

This paper addresses the challenge of accurately forecasting solar power generation (SPG) across multiple sites using a single common model. The proposed deep learning-based model is designed to predict SPG for various locations by leveraging a comprehensive dataset from multiple sites in the Republic of Korea. By incorporating common meteorological elements such as temperature, humidity, and cloud cover into its framework, the model uniquely identifies site-specific features to enhance the forecasting accuracy. The key innovation of this model is the integration of a classifier module within the common model framework, enabling it to adapt and predict SPG for both known and unknown sites based on site similarities. This approach allows for the extraction and utilization of site-specific characteristics from shared meteorological data, significantly improving the model's adaptability and generalization across diverse environmental conditions. The evaluation results demonstrate that the model maintains high performance levels across different SPG sites with minimal performance degradation compared to site-specific models. Notably, the model shows robust forecasting capabilities, even in the absence of target SPG data, highlighting its potential to enhance operational efficiency and support the integration of renewable energy into the power grid, thereby contributing to the global transition towards sustainable energy sources. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20711050
Volume :
16
Issue :
12
Database :
Complementary Index
Journal :
Sustainability (2071-1050)
Publication Type :
Academic Journal
Accession number :
178191089
Full Text :
https://doi.org/10.3390/su16125240