Back to Search Start Over

Effects of aging temperature on microstructure and mechanical properties of PH 13-8Mo stainless steel.

Authors :
Li, Zhenjiang
Luo, Chao
Jiang, Zhonghua
Chen, Xiangjun
Wang, Pei
Source :
Metallurgical Research & Technology; 2024, Vol. 121 Issue 4, p1-9, 9p
Publication Year :
2024

Abstract

Precipitation hardening stainless steel (PHSS) possesses high strength, impact resistance, and corrosion resistance, making it extensively employed in aerospace, nuclear power equipment, and petrochemical industries. The precipitates and reversed austenite (RA) generated during heat treatment significantly influence the properties of PHSS. This study investigates the impact of aging temperature (480–620 °C) on PH 13-8Mo stainless steel. As the aging temperature increased from 480 °C to 620 °C, the yield strength (YS) and ultimate tensile strength (UTS) initially increased and then decreased, while the impact energy initially decreased and then increased. At an aging temperature of 510 °C, the strength and hardness reach their maximum values, indicating peak aging conditions. The microstructure after aging treatment is lath martensite, RA and NiAl. With increasing aging temperature, the size of NiAl precipitates increases, accompanied by a rise in RA content. The quantitative analysis assessed the contributions of various strengthening mechanisms (precipitation strengthening, solid solution strengthening, grain refinement strengthening, dislocation strengthening, etc.) to YS. Quantitative calculations revealed that the precipitation strengthening effect was most pronounced at an aging temperature of 510 °C. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22713646
Volume :
121
Issue :
4
Database :
Complementary Index
Journal :
Metallurgical Research & Technology
Publication Type :
Academic Journal
Accession number :
178241961
Full Text :
https://doi.org/10.1051/metal/2024042