Back to Search Start Over

Asymptotics for the second moment of the Dirichlet coefficients of symmetric power L-functions.

Authors :
Han, Xue
Liu, Huafeng
Source :
Lithuanian Mathematical Journal; Apr2024, Vol. 64 Issue 2, p163-176, 14p
Publication Year :
2024

Abstract

Let m ≥ 2 be an integer. Let f be a holomorphic Hecke eigenform of even weight k for the full modular group SL(2, ℤ). Denote by λ<subscript>Sym</subscript><superscript>m</superscript><subscript>f</subscript> (n) the nth normalized Dirichlet coefficient of the corresponding symmetric power L-function L(s, Sym<superscript>m</superscript> f) related to f. In this paper, we study the average behavior of the second moment of the Dirichlet coefficients λ<subscript>Sym</subscript><superscript>m</superscript><subscript>f</subscript> (n) and establish its asymptotic formula. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03631672
Volume :
64
Issue :
2
Database :
Complementary Index
Journal :
Lithuanian Mathematical Journal
Publication Type :
Academic Journal
Accession number :
178276638
Full Text :
https://doi.org/10.1007/s10986-024-09636-0