Back to Search Start Over

Bifurcation analysis and control of an improved continuous traffic model considering weather effect.

Authors :
Ai, Wenhuan
Lei, Zheng Qing
Danyang, Li
Zeng, Jingming
Liu, Dawei
Source :
Engineering Computations; 2024, Vol. 41 Issue 5, p1233-1271, 39p
Publication Year :
2024

Abstract

Purpose: Highway traffic systems are complex and variable, and studying the bifurcation characteristics of traffic flow systems and designing control schemes for unstable bifurcation points can alleviate traffic congestion from a new perspective. Bifurcation analysis is used to explain the changes in system stability, identify the unstable bifurcation points of the system, and design feedback controllers to realize the control of the unstable bifurcation points of the traffic system. It helps to control the sudden changes in the stable behavior of the traffic system and helps to alleviate traffic congestion, which is of great practical significance. Design/methodology/approach: In this paper, we improve the macroscopic traffic flow model by integrating severe weather factors such as rainfall, snowfall, and dust. We use traveling wave transform to convert it into a traffic flow stability model suitable for branching analysis, thus converting the traffic flow problem into a system stability analysis problem. First, this paper derives the existence conditions of the model Hopf bifurcation and saddle-node bifurcation for the improved macroscopic model, and finds the stability mutation point of the system. Secondly, the connection between the stability mutation points and bifurcation points of the traffic system is analyzed. Finally, for the unstable bifurcation point, a nonlinear system feedback controller is designed using Chebyshev polynomial approximation and stochastic feedback control method. Findings: The Hopf bifurcation is delayed and completely eliminated without changing the equilibrium point of the system, thus controlling the abrupt behavior of the traffic system. Originality/value: Currently there are fewer studies to explain the changes in the stability of the transportation system through bifurcation analysis, in this paper; we design a feedback controller for the unstable bifurcation point of the system to realize the control of the transportation system. It is a new research method that helps to control the sudden change of the stable behavior of the traffic system and helps to alleviate traffic congestion, which is of great practical significance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02644401
Volume :
41
Issue :
5
Database :
Complementary Index
Journal :
Engineering Computations
Publication Type :
Academic Journal
Accession number :
178292483
Full Text :
https://doi.org/10.1108/EC-09-2023-0541