Back to Search Start Over

Clonal integration benefits Calystegia soldanella in heterogeneous habitats.

Authors :
Li, Mingyan
Jiang, Siyu
Wang, Tong
Wang, Hui
Xing, Lijun
Li, Haimei
Sun, Yingkun
Guo, Xiao
Source :
AoB Plants; Jun2024, Vol. 16 Issue 3, p1-7, 7p
Publication Year :
2024

Abstract

Abstract. Land-use change and tourism development have seriously threatened the ecosystems of coastal protection forests and beaches. Light and nutrients are spatially heterogeneously distributed between the two ecosystems. Clonal plants, such as Calystegia soldanella , which play a crucial role in maintaining the ecological stability of coastal habitats, are likely to encounter diverse environments. In this study, we investigated clonal integration and the division of labour in C. soldanella under heterogeneous (high nutrient and low light [HNLL]; low nutrient and high light [LNHL]) and homogeneous habitats. We cultivated pairs of connected and severed ramets of C. soldanella in these environments. Our results showed the total biomass (TB) of connected ramets was higher than that of severed ramets in heterogeneous environments, suggesting clonal integration enhances growth in heterogeneous habitats. The root shoot ratio was significantly lower in HNLL than in LNHL conditions for connected ramets, demonstrating a division of labour in growth under heterogeneous conditions. However, parameters of clonal propagation of C. soldanella did not significantly differ between connected and severed ramets in heterogeneous environments, indicating no division of labour in clonal propagation. In homogeneous environments, the growth of C. soldanella did not benefit from clonal integration. Connected ramets in heterogeneous habitats exhibited higher TB than in homogeneous habitats. The TB of one ramet in HNLL was consistently higher than that in LNHL, irrespective of ramet's states, which suggests that high soil nutrients may enhance the growth. We conclude that C. soldanella has the capability of clonal integration to achieve high biomass in heterogeneous but not in homogeneous conditions, and the establishment of coastal protection forests (high nutrient and low light) may foster the growth of C. soldanella. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20412851
Volume :
16
Issue :
3
Database :
Complementary Index
Journal :
AoB Plants
Publication Type :
Academic Journal
Accession number :
178320663
Full Text :
https://doi.org/10.1093/aobpla/plae028