Back to Search Start Over

New hybrid conjugate gradient method as a convex combination of PRP and RMIL+ methods.

Authors :
Hadji, Ghania
Laskri, Yamina
Bechouat, Tahar
Benzine, Rachid
Source :
Studia Universitatis Babeş-Bolyai, Mathematica; Jun2024, Vol. 69 Issue 2, p457-468, 12p
Publication Year :
2024

Abstract

The Conjugate Gradient (CG) method is a powerful iterative approach for solving large-scale minimization problems, characterized by its simplicity, low computation cost and good convergence. In this paper, a new hybrid conjugate gradient HLB method (HLB: Hadji-Laskri-Bechouat) is proposed and analysed for unconstrained optimization. We compute the parameter β<subscript>k</subscript><superscript>HLB</superscript> as a convex combination of the Polak-Ribière-Polyak (β<subscript>k</subscript><superscript>PRP</superscript>)[1] and the Mohd Rivaie-Mustafa Mamat and Abdelrhaman Abashar (β<subscript>k</subscript><superscript>RMIL+</superscript>) i.e β<subscript>k</subscript><superscript>HLB</superscript>=(1−θ<subscript>k</subscript>)β<subscript>k</subscript><superscript>PRP</superscript>+θ<subscript>k</subscript>β<subscript>k</subscript><superscript>RMIL+</superscript> . By comparing numerically CGHLB with PRP and RMIL+ and by using the Dolan and More CPU performance, we deduce that CGHLB is more efficient. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02521938
Volume :
69
Issue :
2
Database :
Complementary Index
Journal :
Studia Universitatis Babeş-Bolyai, Mathematica
Publication Type :
Academic Journal
Accession number :
178322465
Full Text :
https://doi.org/10.24193/subbmath.2024.2.14