Back to Search
Start Over
New hybrid conjugate gradient method as a convex combination of PRP and RMIL+ methods.
- Source :
- Studia Universitatis Babeş-Bolyai, Mathematica; Jun2024, Vol. 69 Issue 2, p457-468, 12p
- Publication Year :
- 2024
-
Abstract
- The Conjugate Gradient (CG) method is a powerful iterative approach for solving large-scale minimization problems, characterized by its simplicity, low computation cost and good convergence. In this paper, a new hybrid conjugate gradient HLB method (HLB: Hadji-Laskri-Bechouat) is proposed and analysed for unconstrained optimization. We compute the parameter β<subscript>k</subscript><superscript>HLB</superscript> as a convex combination of the Polak-Ribière-Polyak (β<subscript>k</subscript><superscript>PRP</superscript>)[1] and the Mohd Rivaie-Mustafa Mamat and Abdelrhaman Abashar (β<subscript>k</subscript><superscript>RMIL+</superscript>) i.e β<subscript>k</subscript><superscript>HLB</superscript>=(1−θ<subscript>k</subscript>)β<subscript>k</subscript><superscript>PRP</superscript>+θ<subscript>k</subscript>β<subscript>k</subscript><superscript>RMIL+</superscript> . By comparing numerically CGHLB with PRP and RMIL+ and by using the Dolan and More CPU performance, we deduce that CGHLB is more efficient. [ABSTRACT FROM AUTHOR]
- Subjects :
- CONJUGATE gradient methods
SIMPLICITY
Subjects
Details
- Language :
- English
- ISSN :
- 02521938
- Volume :
- 69
- Issue :
- 2
- Database :
- Complementary Index
- Journal :
- Studia Universitatis Babeş-Bolyai, Mathematica
- Publication Type :
- Academic Journal
- Accession number :
- 178322465
- Full Text :
- https://doi.org/10.24193/subbmath.2024.2.14