Back to Search Start Over

Inkjet-Printed Reflectarray Antenna Integrating Feed and Aperture on a Flexible Substrate Using Origami Techniques.

Authors :
Lin, Yi-Xin
Ko, Kuan-Yu
Lai, Fei-Peng
Chen, Yen-Sheng
Source :
Electronics (2079-9292); Jul2024, Vol. 13 Issue 13, p2505, 21p
Publication Year :
2024

Abstract

This paper presents an innovative method for fabricating reflectarray antennas using inkjet printing technology on flexible substrates, markedly enhancing integration and manufacturability compared to traditional PCB methods. The technique employs inkjet printing to deposit conductive inks directly onto a flexible polyethylene naphthalate (PEN) substrate, seamlessly integrating feed and reflectarray components without complex assembly processes. This streamlined approach not only reduces manufacturing complexity and costs but also improves mechanical flexibility, making it ideal for applications requiring deployable antennas. The design process includes an origami-inspired folding of the substrate to achieve the desired three-dimensional antenna structures, optimizing the focal length to dimension ratio (F/D) to ensure maximum efficiency and performance. The feed and the reflectarray geometry are optimized for an F/D of 0.6, which achieves high gain and aperture efficiency, demonstrated through detailed simulations and measurements. For normal incidence, the configuration achieves a peak gain of 9.3 dBi and 48% radiation efficiency at 10 GHz; for oblique incidence, it achieves 7.3 dBi and 40% efficiency. The study underscores the significant potential of inkjet-printed antennas in terms of cost-efficiency, precision, and versatility, paving the way for new advancements in antenna technology with a substantial impact on future communication systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799292
Volume :
13
Issue :
13
Database :
Complementary Index
Journal :
Electronics (2079-9292)
Publication Type :
Academic Journal
Accession number :
178412606
Full Text :
https://doi.org/10.3390/electronics13132505