Back to Search Start Over

Extraction of Moso Bamboo Parameters Based on the Combination of ALS and TLS Point Cloud Data.

Authors :
Fan, Suying
Jing, Sishuo
Xu, Wenbing
Wu, Bin
Li, Mingzhe
Jing, Haochen
Source :
Sensors (14248220); Jul2024, Vol. 24 Issue 13, p4036, 17p
Publication Year :
2024

Abstract

Extracting moso bamboo parameters from single-source point cloud data has limitations. In this article, a new approach for extracting moso bamboo parameters using airborne laser scanning (ALS) and terrestrial laser scanning (TLS) point cloud data is proposed. Using the field-surveyed coordinates of plot corner points and the Iterative Closest Point (ICP) algorithm, the ALS and TLS point clouds were aligned. Considering the difference in point distribution of ALS, TLS, and the merged point cloud, individual bamboo plants were segmented from the ALS point cloud using the point cloud segmentation (PCS) algorithm, and individual bamboo plants were segmented from the TLS and the merged point cloud using the comparative shortest-path (CSP) method. The cylinder fitting method was used to estimate the diameter at breast height (DBH) of the segmented bamboo plants. The accuracy was calculated by comparing the bamboo parameter values extracted by the above methods with reference data in three sample plots. The comparison results showed that by using the merged data, the detection rate of moso bamboo plants could reach up to 97.30%; the R<superscript>2</superscript> of the estimated bamboo height was increased to above 0.96, and the root mean square error (RMSE) decreased from 1.14 m at most to a range of 0.35–0.48 m, while the R<superscript>2</superscript> of the DBH fit was increased to a range of 0.97–0.99, and the RMSE decreased from 0.004 m at most to a range of 0.001–0.003 m. The accuracy of moso bamboo parameter extraction was significantly improved by using the merged point cloud data. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
13
Database :
Complementary Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
178413234
Full Text :
https://doi.org/10.3390/s24134036