Back to Search
Start Over
Temperature effects on luminescence of YNbO4:Er3+/Tm3+/Yb3+ white-light upconversion phosphor and sensing behavior based on thermally and non-thermally coupled levels.
- Source :
- Applied Physics A: Materials Science & Processing; Jul2024, Vol. 130 Issue 7, p1-10, 10p
- Publication Year :
- 2024
-
Abstract
- Tri-doped phosphor YNbO<subscript>4</subscript>:Er<superscript>3+</superscript>/Tm<superscript>3+</superscript>/Yb<superscript>3+</superscript> was prepared by solid-state reaction method. The XRD and SEM results reveal that the product is a monoclinic phase of YNbO<subscript>4</subscript> with high crystallinity and the particles presenting grains with well-defined boundaries with average size is about 1–5 μm. The temperature-dependent luminescence is investigated with 980 nm laser excitation, whereas temperature sensing behaviour was studied in the range of 300–500 K based on Stark sublevels <superscript>1</superscript>G<subscript>4(a)</subscript>/<superscript>1</superscript>G<subscript>4(b)</subscript> (Tm<superscript>3+</superscript>), thermal coupling levels <superscript>2</superscript>H<subscript>11/2</subscript>/<superscript>4</superscript>S<subscript>3/2</subscript> (Er<superscript>3+</superscript>) and non-thermal coupling levels <superscript>4</superscript>F<subscript>9/2</subscript> → <superscript>4</superscript>I<subscript>15/2</subscript> (Er<superscript>3+</superscript>) /<superscript>3</superscript>F<subscript>2</subscript> → <superscript>3</superscript>H<subscript>6</subscript> (Tm<superscript>3+</superscript>), <superscript>2</superscript>H<subscript>11/2</subscript> → <superscript>4</superscript>I<subscript>15/2</subscript> (Er<superscript>3+</superscript>) / <superscript>4</superscript>F<subscript>9/2</subscript> → <superscript>4</superscript>I<subscript>15/2</subscript> (Tm<superscript>3+</superscript>) and <superscript>4</superscript>S<subscript>3/2</subscript> → <superscript>4</superscript>I<subscript>15/2</subscript> (Er<superscript>3+</superscript>) /<superscript>3</superscript>F<subscript>2</subscript> → <superscript>3</superscript>H<subscript>6</subscript> (Tm<superscript>3+</superscript>), utilizing fluorescence intensity ratio (FIR) technique. It is worth highlighting that <superscript>1</superscript>G<subscript>4(a)</subscript>/<superscript>1</superscript>G<subscript>4(b)</subscript> ratio as is not much employed in thermometry. Regarding, NTCL <superscript>3</superscript>F<subscript>2</subscript>/<superscript>1</superscript>G<subscript>4(b)</subscript> pair exhibited the highest absolute sensitivity (S<subscript>A</subscript>) is about 110.2 × 10<superscript>− 3</superscript> K<superscript>− 1</superscript> at 500 K, whereas NTCL <superscript>3</superscript>F<subscript>2</subscript>/<superscript>4</superscript>F<subscript>9/2</subscript> pair presented the highest relative sensitivity (S<subscript>R</subscript>) is 2.1% K<superscript>− 1</superscript> at 339 K. Meanwhile, the temperature-dependent emission colours are discussed in detail. High sensitivity indicates that YNbO<subscript>4</subscript>:Er<superscript>3+</superscript>/Tm<superscript>3+</superscript>/Yb<superscript>3+</superscript> white-light phosphor can be used in non-contact temperature sensors applications. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09478396
- Volume :
- 130
- Issue :
- 7
- Database :
- Complementary Index
- Journal :
- Applied Physics A: Materials Science & Processing
- Publication Type :
- Academic Journal
- Accession number :
- 178504438
- Full Text :
- https://doi.org/10.1007/s00339-024-07632-2