Back to Search
Start Over
Keyframe recommendation based on feature intercross and fusion.
- Source :
- Complex & Intelligent Systems; Aug2024, Vol. 10 Issue 4, p4955-4971, 17p
- Publication Year :
- 2024
-
Abstract
- Keyframe extraction can effectively help users quickly understand video content. Generally, keyframes should be representative of the video content and simultaneously be diverse to reduce redundancy. Aiming to find the features of frames and filter out representative frames of the video, we propose a method of keyframe recommendation based on feature intercross and fusion (KFRFIF). The method is inspired by the implied relations between keyframe-extraction problem and recommendation problem. First, we investigate the application of a recommendation framework to the keyframe extraction problem. Second, the architecture of the proposed KFRFIF is put forward. Then, an algorithm for extracting intra-frame image features based on the combination of multiple image descriptors is proposed. An algorithm for extracting inter-frame distance features based on the combination of multiple distance calculation methods is designed. Moreover, A recommendation model based on feature intercross and fusion is put forward. An ablation study is further performed to verify the effectiveness of the submodule. Ultimately, the experimental results on four datasets with five outstanding approaches indicate the superior performance of our approach. [ABSTRACT FROM AUTHOR]
- Subjects :
- VIDEO summarization
VIDEO compression
FEATURE extraction
DESCRIPTOR systems
Subjects
Details
- Language :
- English
- ISSN :
- 21994536
- Volume :
- 10
- Issue :
- 4
- Database :
- Complementary Index
- Journal :
- Complex & Intelligent Systems
- Publication Type :
- Academic Journal
- Accession number :
- 178504571
- Full Text :
- https://doi.org/10.1007/s40747-024-01417-z