Back to Search Start Over

Probing Electronic Structure Changes in Cobalt Oxalate Anode for Lithium‐Ion Batteries.

Authors :
Li, Yuhao
Dai, Penghao
Liu, Qingshan
Yu, Guobin
Wang, Tiansheng
Wu, Yangyang
Li, Qiang
Wang, Meng
Wang, Yaqun
Zhu, Yue
Li, Hongsen
Source :
Advanced Energy Materials; 7/19/2024, Vol. 14 Issue 27, p1-9, 9p
Publication Year :
2024

Abstract

Transition metal‐based materials exhibit a broad range of catalytic activities in numerous electrochemical processes. Their displayed catalytic functions rely essentially on their distinctive electronic structures, changes of which play pivotal roles in dictating reaction dynamics within many electrochemical devices. Nevertheless, accurately probing electronic structure changes, especially in real‐time, of active materials remains a formidable challenge. In this work, a viable approach to achieve it within a CoC2O4/Li model system by employing a combined microscopic is demonstrated, spectroscopic analysis, plus a unique operando magnetometry technique. The findings reveal that upon completion of the conventional conversion of CoC2O4, a surface‐dominated capacitance emerges at the Co/Li2C2O4 interface owing to the injection of spin‐polarized electrons. Subsequently, the decomposition of Li2C2O4 proceeds through the releasing of the spin‐polarized electrons from Co, which, therefore serve as a catalyst leading to further discharge products. Such real‐time monitoring of electron transfer is realized by in situ monitoring electronic structure changes of Co, manifested by its intriguing magnetization alterations during the process. This work highlights a novel characterization tool that provides a solid explanation for the commonly observed large capacities in this type of materials and sheds light on design rules and selection guidance of materials for high‐performance electrochemical energy storage systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16146832
Volume :
14
Issue :
27
Database :
Complementary Index
Journal :
Advanced Energy Materials
Publication Type :
Academic Journal
Accession number :
178532082
Full Text :
https://doi.org/10.1002/aenm.202400643