Back to Search Start Over

Deep Learning Innovations in Video Classification: A Survey on Techniques and Dataset Evaluations.

Authors :
Mao, Makara
Lee, Ahyoung
Hong, Min
Source :
Electronics (2079-9292); Jul2024, Vol. 13 Issue 14, p2732, 30p
Publication Year :
2024

Abstract

Video classification has achieved remarkable success in recent years, driven by advanced deep learning models that automatically categorize video content. This paper provides a comprehensive review of video classification techniques and the datasets used in this field. We summarize key findings from recent research, focusing on network architectures, model evaluation metrics, and parallel processing methods that enhance training speed. Our review includes an in-depth analysis of state-of-the-art deep learning models and hybrid architectures, comparing models to traditional approaches and highlighting their advantages and limitations. Critical challenges such as handling large-scale datasets, improving model robustness, and addressing computational constraints are explored. By evaluating performance metrics, we identify areas where current models excel and where improvements are needed. Additionally, we discuss data augmentation techniques designed to enhance dataset accuracy and address specific challenges in video classification tasks. This survey also examines the evolution of convolutional neural networks (CNNs) in image processing and their adaptation to video classification tasks. We propose future research directions and provide a detailed comparison of existing approaches using the UCF-101 dataset, highlighting progress and ongoing challenges in achieving robust video classification. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799292
Volume :
13
Issue :
14
Database :
Complementary Index
Journal :
Electronics (2079-9292)
Publication Type :
Academic Journal
Accession number :
178691653
Full Text :
https://doi.org/10.3390/electronics13142732