Back to Search
Start Over
Radium-223 Treatment Produces Prolonged Suppression of Resident Osteoblasts and Decreased Bone Mineral Density in Trabecular Bone in Osteoblast Reporter Mice.
- Source :
- Cancers; Jul2024, Vol. 16 Issue 14, p2603, 15p
- Publication Year :
- 2024
-
Abstract
- Simple Summary: Radium 223 (Ra-223) is a radiopharmaceutical that targets tumor-induced osteoblasts (bone-forming cells). Ra-223 reduces bone pain and prolongs overall survival in men with bone-metastatic, castrate-resistant prostate cancer. However, increased fracture risk in skeletal sites with no bone metastasis has been observed in patients treated with Ra-223. The aim of this study was to examine the effects of Ra-223 on resident osteoblasts and normal bone structure in mouse models. Upon Ra-223 treatment, 70% of resident osteoblasts were reduced within 2 days, and the reduction lasted for at least 18 weeks. Ra-223 reduced the osteoblasts mainly localized in trabecular bone areas. Ra-223 also reduced bone mineral density and altered bone microstructure in the trabecular area of femurs. Furthermore, Ra-223 treatment also significantly reduced tumor-induced osteoblasts. These studies show that Ra-223 affects the structure of bones that are not involved in bone metastasis. Strategies that improve bone health may reduce fracture risk in patients receiving Ra-223. Radium 223 (Ra-223) is an α-emitting bone-homing radiopharmaceutical that targets tumor-induced osteoblasts and is used to reduce bone pain and prolong overall survival in men with bone-metastatic, castrate-resistant prostate cancer. However, increased fracture risk in skeletal sites with no bone metastasis has been observed in patients treated with Ra-223. Both luciferase- or green fluorescence protein (GFP)-labeled osteoblast reporter mice were used to monitor the effect of Ra-223 on resident osteoblasts and normal bone structure. Upon Ra-223 treatment, 70% of resident osteoblasts were reduced within 2 days, and the osteoblast reduction lasted for at least 18 weeks without detectable recovery, as measured by in vivo bioluminescent imaging. In GFP-labeled osteoblast reporter mice, Ra-223 mainly reduced osteoblasts localized in the trabecular bone areas; the osteoblasts in the growth plates were less affected. Micro-computed tomography analyses showed that Ra-223 significantly reduced bone mineral density and bone microstructure in the trabecular area of femurs but not in the cortical bone. Tumor-induced bone was generated by inoculating osteogenic TRAMP-BMP4 prostate cancer cells into the mouse femurs; Ra-223 treatment significantly reduced tumor-induced osteoblasts. Our study shows that Ra-223 affects bone structures that are not involved in bone metastasis. Strategies that improve bone health may reduce fracture risk in patients receiving Ra-223. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20726694
- Volume :
- 16
- Issue :
- 14
- Database :
- Complementary Index
- Journal :
- Cancers
- Publication Type :
- Academic Journal
- Accession number :
- 178701245
- Full Text :
- https://doi.org/10.3390/cancers16142603