Back to Search Start Over

Rapid and non‐destructive determination of total phenolic contents using UV–NIR spectroscopy of dehydrated mushroom (Lentinus edodes).

Authors :
Younas, Shoaib
Manzoor, Muhammad Sajid
Arqam, Ukasha
Ali, Farhan
Murtaza, Ayesha
Wahab, Muhammad Abdul
Manzoor, Muhammad Aamir
Imran, Muhammad
Wang, Xin
Source :
Journal of Food Process Engineering; Jul2024, Vol. 47 Issue 7, p1-8, 8p
Publication Year :
2024

Abstract

Multispectral imaging (MSI) is an emerging technique that ranges from light spectrum of UV–NIR (405–970 nm) used for rapid determination of phenolic contents. The current study focuses on the determination of total phenolic content (TPC) in a fast and non‐invasive way in hot‐air dehydrated Lentinus edodes. The spectral information of MSI has been combined with various chemometrics like partial least squares (PLS), back propagation neural networks (BPNN), and least squares‐support vector machines (LS‐SVM) for the quantitative prediction of phenolic contents. Fresh mushrooms possessed 1.49 and 1.73 GAE g kg−1 TPC in processed samples at 10% moisture content. Comparing models, PLS acquired significant Rp with a lower RMSEP of 0.9980 and 0.1039 and was considered an outstanding algorithm, followed by LS‐SVM of 0.9777 and 0.1417 coefficient of determination and error of prediction data set, respectively. It is concluded that MSI spectroscopy produces highly significant results to determine functional food properties in a rapid and non‐destructive way. The present study will provide a strong platform for the fast online determination of phenolic profile of agricultural commodities. Practical applications: Utilization of spectroscopy for non‐destructive detection of phenolic contents is defined through the combination of chemometrics with spectra of multispectral imaging system and emphasizes control processing of postharvest horticulture produces. Prediction results R2 above 80% describe that these chemometrics are successfully capable of estimating total phenolic contents in control processing for quality preservation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
01458876
Volume :
47
Issue :
7
Database :
Complementary Index
Journal :
Journal of Food Process Engineering
Publication Type :
Academic Journal
Accession number :
178737721
Full Text :
https://doi.org/10.1111/jfpe.14699