Back to Search Start Over

Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex.

Authors :
Horrocks, Edward A. B.
Rodrigues, Fabio R.
Saleem, Aman B.
Source :
Nature Communications; 7/30/2024, Vol. 15 Issue 1, p1-23, 23p
Publication Year :
2024

Abstract

Time courses of neural responses underlie real-time sensory processing and perception. How these temporal dynamics change may be fundamental to how sensory systems adapt to different perceptual demands. By simultaneously recording from hundreds of neurons in mouse primary visual cortex, we examined neural population responses to visual stimuli at sub-second timescales, during different behavioural states. We discovered that during active behavioural states characterised by locomotion, single-neurons shift from transient to sustained response modes, facilitating rapid emergence of visual stimulus tuning. Differences in single-neuron response dynamics were associated with changes in temporal dynamics of neural correlations, including faster stabilisation of stimulus-evoked changes in the structure of correlations during locomotion. Using Factor Analysis, we examined temporal dynamics of latent population responses and discovered that trajectories of population activity make more direct transitions between baseline and stimulus-encoding neural states during locomotion. This could be partly explained by dampening of oscillatory dynamics present during stationary behavioural states. Functionally, changes in temporal response dynamics collectively enabled faster, more stable and more efficient encoding of new visual information during locomotion. These findings reveal a principle of how sensory systems adapt to perceptual demands, where flexible neural population dynamics govern the speed and stability of sensory encoding. Sensory systems must adapt to changing perceptual demands. Here, the authors show that changes in sub-second timescale neural population dynamics enable flexible sensory encoding during different behavioural states, in mouse visual cortex. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
178777469
Full Text :
https://doi.org/10.1038/s41467-024-50563-y