Back to Search Start Over

Forecasting the realized volatility of agricultural commodity prices: Does sentiment matter?

Authors :
Bonato, Matteo
Cepni, Oguzhan
Gupta, Rangan
Pierdzioch, Christian
Source :
Journal of Forecasting; Sep2024, Vol. 43 Issue 6, p2088-2125, 38p
Publication Year :
2024

Abstract

We analyze the out‐of‐sample predictive power of sentiment for the realized volatility of agricultural commodity price returns. We use high‐frequency intra‐day data covering the period from 2009 to 2020 to estimate realized volatility. Our baseline forecasting model is a heterogeneous autoregressive (HAR) model, which we extend to include sentiment. We further enhance this model by incorporating various key realized moments such as leverage, realized skewness, realized kurtosis, realized upside ("good") volatility, realized downside ("bad") volatility, realized jumps, realized upside tail risk, and realized downside tail risk. In order to setup a forecasting model, we use (i) forward and backward stepwise predictor selection and (ii) a model‐based averaging algorithm. The forecasting models constructed through these algorithms outperform both the baseline HAR‐RV model and the HAR‐RV‐sentiment model. We conclude that, for the agricultural commodities studied in our research, realized moments play a more significant role in forecasting realized volatility compared to sentiment. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02776693
Volume :
43
Issue :
6
Database :
Complementary Index
Journal :
Journal of Forecasting
Publication Type :
Academic Journal
Accession number :
178782870
Full Text :
https://doi.org/10.1002/for.3106