Back to Search Start Over

Full-automatic high-precision scene 3D reconstruction method with water-area intelligent complementation and mesh optimization for UAV images.

Authors :
Bingxuan Guo
Yingwei Ge
Xiongwu Xiao
Chao Wang
Jianya Gong
Deren Li
Source :
International Journal of Digital Earth; Jan2024, Vol. 17 Issue 1, p1-30, 30p
Publication Year :
2024

Abstract

Fast and high-precision urban scene 3D modeling is the foundational data infrastructure for the digital earth and smart cities. However, due to challenges such as water-area matching difficulties and issues like data redundancy and insufficient observations, existing full-automatic 3D modeling methods often result in water-area missing and many small holes in the models and insufficient local-model accuracy. To overcome these challenges, full-automatic high-precision scene 3D reconstruction method with water-area intelligent complementation on depth maps and mesh optimization is proposed. Firstly, SfM was used to calculated image poses and PatchMatch was used to generated initial depth maps. Secondly, a simplified GAN extracted water-area masks and ray tracing was used achieve high-precision auto-completed water-area depth values. Thirdly, fully connected CRF optimized water-areas and arounds in depth maps. Fourthly, high-precision 3D point clouds were obtained using depth map fusion based on clustering culling and depth least squares. Then, mesh was generated and optimized using similarity measurement and vertex gradients to obtain refined mesh. Finally, highprecision scene 3D models without water-area missing or holes were generated. The results showed that: to compare with the-state-of-art ContextCapture, the proposed method enhances model completeness by 14.3%, raises average accuracy by 14.5% and improves processing efficiency by 63.6%. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17538947
Volume :
17
Issue :
1
Database :
Complementary Index
Journal :
International Journal of Digital Earth
Publication Type :
Academic Journal
Accession number :
178809067
Full Text :
https://doi.org/10.1080/17538947.2024.2317441