Back to Search
Start Over
Combinatorial Calabi flow on surfaces of finite topological type.
- Source :
- Proceedings of the American Mathematical Society; Sep2024, Vol. 152 Issue 9, p4035-4047, 13p
- Publication Year :
- 2024
-
Abstract
- This paper studies the combinatorial Calabi flow for circle patterns with obtuse exterior intersection angles on surfaces of finite topological type. By using a Lyapunov function, we show that the flow exists for all time and converges exponentially fast to a circle pattern metric with prescribed attainable curvatures. This provides an algorithm to search for the desired circle patterns. [ABSTRACT FROM AUTHOR]
- Subjects :
- LYAPUNOV functions
SEARCH algorithms
CURVATURE
ANGLES
Subjects
Details
- Language :
- English
- ISSN :
- 00029939
- Volume :
- 152
- Issue :
- 9
- Database :
- Complementary Index
- Journal :
- Proceedings of the American Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 178830306
- Full Text :
- https://doi.org/10.1090/proc/16839