Back to Search Start Over

A stoichiometric insight into the seasonal imbalance of phosphorus and nitrogen in central European fishponds.

Authors :
Kajgrová, Lenka
Kolar, Vojtech
Roy, Koushik
Adámek, Zdeněk
Blabolil, Petr
Kopp, Radovan
Mráz, Jan
Musil, Martin
Pecha, Oldřich
Pechar, Libor
Potužák, Jan
Vrba, Jaroslav
Source :
Environmental Sciences Europe; 8/5/2024, Vol. 36 Issue 1, p1-9, 9p
Publication Year :
2024

Abstract

Background: This study examines seasonal and regional trends in chlorophyll-a concentrations and the dynamics of nitrogen (N) and phosphorus (P) in 32 fishponds (resulting in 150 pond-year cases) employed for fish production. Fishponds have a poor ecological state, requiring further insights for pond management. To gain those insights, monthly data on the pond environment were collected over the growing seasons from April to September (up to 14 years) across lowland to highland regions in Czechia. We used a ratio of dissolved inorganic nitrogen to total phosphorus (DIN:TP) to investigate seasonal patterns of N and P limitations. Results: Fishponds in the lowland region (below 199 m above sea level, a.s.l.) were predominantly N-limited (80%), while ponds in the midland region (200–449 m a.s.l.) exhibited P limitation at the beginning of the growing season (April–May) and N limitation by the end of the season (August–September; 90% of fishponds). Highland fishponds (above 450 m a.s.l.) showed frequent P limitations, especially during the beginning of the season. Chlorophyll-a concentrations varied on both regional and seasonal scales, with the overall phytoplankton biomass peak at 31 ha of pond surface area. Chlorophyll-a remained stable at the beginning of the season regardless of the DIN:TP ratio but increased with a lower DIN:TP ratio by its end. The chlorophyll-a concentrations were lowest at the beginning and highest at the end of the season and decreased with altitude. Conclusions: Seasonal and regional variations in nutrient limitations and chlorophyll-a occur in fishponds. Our study suggests that targeted seasonal nutrient input and enhanced monitoring can significantly improve fishpond management practices and ecosystem stability. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
21904707
Volume :
36
Issue :
1
Database :
Complementary Index
Journal :
Environmental Sciences Europe
Publication Type :
Academic Journal
Accession number :
178837735
Full Text :
https://doi.org/10.1186/s12302-024-00968-9