Back to Search
Start Over
PREDICTION METHOD OF RATE OF PENETRATION BASED ON FUZZY SUPPORT VECTOR REGRESSION.
- Source :
- Scalable Computing: Practice & Experience; Sep2024, Vol. 25 Issue 5, p4218-4227, 10p
- Publication Year :
- 2024
-
Abstract
- Predicting the rate of penetration (ROP) is important for optimizing drilling parameters, improving drilling efficiency, and optimizing economic benefits throughout the drilling process. The current prediction model of ROP based on machine learning algorithms does not consider the interference of outliers. Therefore, in this study, we propose a method to predict ROP based on fuzzy support vector regression (FSVR). First, appropriate input parameters were selected from the controllable parameters. Second, based on the local outlier factor, a fuzzy membership degree was assigned to each sample. Finally, the sample with the fuzzy membership value was input into the model for ROP prediction. The results demonstrated that the goodness of fit (R2) of the improved FSVR model is 0.9634, and the mean absolute error is 0.1974. Compared with standard SVR and other models, the improved FSVR model has a stronger anti-interference ability, smaller prediction error for normal samples, and higher accuracy. [ABSTRACT FROM AUTHOR]
- Subjects :
- MACHINE learning
GOODNESS-of-fit tests
PREDICTION models
SAMPLING errors
FORECASTING
Subjects
Details
- Language :
- English
- ISSN :
- 18951767
- Volume :
- 25
- Issue :
- 5
- Database :
- Complementary Index
- Journal :
- Scalable Computing: Practice & Experience
- Publication Type :
- Academic Journal
- Accession number :
- 178841812
- Full Text :
- https://doi.org/10.12694/scpe.v25i5.3070