Back to Search Start Over

Noncontact Rotational Speed Measurement with Near-Field Microwave of Open-Ended Waveguide.

Authors :
Bai, Yongjiang
Ye, Ming
Yang, Fang
Wang, Chun
Dong, Yingdi
Yang, Jiye
Zhou, Guisheng
Xie, Yongjun
Source :
Electronics (2079-9292); Aug2024, Vol. 13 Issue 15, p3012, 18p
Publication Year :
2024

Abstract

Rotational speed measurement is important for many applications. Here, a noncontact rotational speed test method based on the detection of the periodically perturbed near-field microwave of an open-ended waveguide is proposed. Both simulations and experiments were conducted to verify the near-field microwave rotational speed sensor. The constructed rotation speed sensing system was composed of a standard open-ended WR-42 waveguide (in our measurements, a waveguide-to-coaxial adapter was used to represent an open-ended waveguide) working at ~18 GHz, a radio frequency (RF) circulator, a signal generator, a, RF detector and an oscilloscope. A rotating fan to be measured was placed close to the waveguide's mouth and, thus, the waveguide's reflection coefficient was periodically modulated by the rotating fan blades. Then, the RF detector converted this varying reflection coefficient into a direct current (DC) voltage, namely, a periodical waveform. Finally, the rotational speed of the fan could be extracted from this waveform. Measurements using both the proposed near-field microwave method and conventional optical transmission/reflection methods were conducted for verification. The effect of the rotating fan's location relative to the waveguide's mouth was also studied. The results show the following: 1. The proposed method works well with a rotational speed of up to ~5000 RPM (rounds per minute), and an accuracy of 1.7% can be achieved. 2. Metallic or non-metallic fan blades are all suitable for this method. Compared with the existing radar method, the proposed method may be advantageous for rotation detection in a constrained space. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799292
Volume :
13
Issue :
15
Database :
Complementary Index
Journal :
Electronics (2079-9292)
Publication Type :
Academic Journal
Accession number :
178947674
Full Text :
https://doi.org/10.3390/electronics13153012