Back to Search Start Over

Assessing Voltage Stability in Distribution Networks: A Methodology Considering Correlation among Stochastic Variables.

Authors :
Gao, Yuan
Li, Sheng
Yan, Xiangyu
Source :
Applied Sciences (2076-3417); Aug2024, Vol. 14 Issue 15, p6455, 19p
Publication Year :
2024

Abstract

Distributed photovoltaic (PV) output exhibits strong stochasticity and weak adjustability. After being integrated with the network, its interaction with stochastic loads increases the difficulty of assessing the distribution network's static voltage stability (SVS). In response to this issue, this article presents a probabilistic assessment method for SVS in a distribution network with distributed PV that considers the bilateral uncertainties and correlations on the source and load sides. The probabilistic models for the uncertain variables are established, with the correlation between stochastic variables described using the Copula function. The three-point estimate method (3PEM) based on the Nataf transformation is used to generate correlated samples. Continuous power flow (CPF) calculations are then performed on these samples to obtain the system's critical voltage stability state. The distribution curves of critical voltage and load margin index (LMI) are fitted using Cornish-Fisher series. Finally, the utility function is introduced to establish the degree of risk of voltage instability under different scenarios, and the SVS assessment of the distribution network is completed. The IEEE 33-node distribution system is utilized to test the method presented, and the results across various scenarios highlight the method's effectiveness. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
15
Database :
Complementary Index
Journal :
Applied Sciences (2076-3417)
Publication Type :
Academic Journal
Accession number :
178949428
Full Text :
https://doi.org/10.3390/app14156455