Back to Search Start Over

ANN Approach for SCARA Robot Inverse Kinematics Solutions with Diverse Datasets and Optimisers.

Authors :
Bouzid, Rania
Gritli, Hassène
Narayan, Jyotindra
Source :
Applied Computer Systems; Jun2024, Vol. 29 Issue 1, p24-34, 11p
Publication Year :
2024

Abstract

In the pursuit of enhancing the efficiency of the inverse kinematics of SCARA robots with four degrees of freedom (4-DoF), this research delves into an approach centered on the application of Artificial Neural Networks (ANNs) to optimise and, hence, solve the inverse kinematics problem. While analytical methods hold considerable importance, tackling the inverse kinematics for manipulator robots, like the SCARA robots, can pose challenges due to their inherent complexity and computational intensity. The main goal of the present paper is to develop efficient ANN-based solutions of the inverse kinematics that minimise the Mean Squared Error (MSE) in the 4-DoF SCARA robot inverse kinematics. Employing three distinct training algorithms – Levenberg-Marquardt (LM), Bayesian Regularization (BR), and Scaled Conjugate Gradient (SCG) – and three generated datasets, we fine-tune the ANN performance. Utilising diverse datasets featuring fixed step size, random step size, and sinusoidal trajectories allows for a comprehensive evaluation of the ANN adaptability to various operational scenarios during the training process. The utilisation of ANNs to optimise inverse kinematics offers notable advantages, such as heightened computational efficiency and precision, rendering them a compelling choice for real-time control and planning tasks. Through a comparative analysis of different training algorithms and datasets, our study yields valuable insights into the selection of the most effective training configurations for the optimisation of the inverse kinematics of the SCARA robot. Our research outcomes underscore the potential of ANNs as a viable means to enhance the efficiency of SCARA robot control systems, particularly when conventional analytical methods encounter limitations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22558683
Volume :
29
Issue :
1
Database :
Complementary Index
Journal :
Applied Computer Systems
Publication Type :
Academic Journal
Accession number :
179062376
Full Text :
https://doi.org/10.2478/acss-2024-0004