Back to Search
Start Over
Experimental Investigation on the Dynamics Characteristics of a Two-State Quantum Dot Laser under Optical Feedback.
- Source :
- Photonics; Aug2024, Vol. 11 Issue 8, p692, 10p
- Publication Year :
- 2024
-
Abstract
- We experimentally investigate the dynamics characteristics of a two-state quantum dot laser (TSQDL) subject to optical feedback. Firstly, we inspect the impact of the temperature on the power-current characteristics of the ground state (GS) lasing and the excited state (ES) lasing in the TSQDL operating at free-running. The results demonstrate that with the decrease in the temperature, the threshold current for GS lasing ( I t h G S ) and the threshold current for ES lasing ( I t h E S ) decrease very slowly. There exists a current for GS quenching ( I Q G S ), which is gradually increased with the decrease in the temperature. After introducing optical feedback, the overall trend of change is similar to those obtained under free-running. Next, through inspecting the time series and power spectrum of the output from the TSQDL under optical feedback, the dynamical characteristics of the TSQDL are investigated under different feedback ratios, and diverse dynamical states including quasi-chaos pulse package, chaos state, regular pulse package, quasi-period two, quasi-regular pulsing, and chaos regular pulse package have been observed. Finally, for the TSQDL biased at three different cases: lower than I t h E S , slightly higher than I t h E S , and higher than I t h E S , nonlinear dynamic state evolutions with the increase in feedback ratio are inspected, respectively. The results show that, for the TSQDL biased at lower than I t h E S , it presents an evolution route of stable state—quasi-chaos pulse package—chaos state—regular pulse package. For the TSQDL biased at slightly larger than I t h E S , it presents an evolution route of stable state—quasi-regular pulsing—quasi-period two—chaos regular pulse package. For the TSQDL biased at higher than I t h E S , the TSQDL always behaves stable state within the range of feedback ratio that the experiment can achieve. However, with the increase in optical feedback ratio, the number of longitudinal modes for GS lasing and ES lasing are changed. [ABSTRACT FROM AUTHOR]
- Subjects :
- OPTICAL feedback
POWER series
EXCITED states
POWER spectra
TIME series analysis
Subjects
Details
- Language :
- English
- ISSN :
- 23046732
- Volume :
- 11
- Issue :
- 8
- Database :
- Complementary Index
- Journal :
- Photonics
- Publication Type :
- Academic Journal
- Accession number :
- 179378812
- Full Text :
- https://doi.org/10.3390/photonics11080692