Back to Search
Start Over
An Improved Co-Resident Attack Defense Strategy Based on Multi-Level Tenant Classification in Public Cloud Platforms.
- Source :
- Electronics (2079-9292); Aug2024, Vol. 13 Issue 16, p3273, 18p
- Publication Year :
- 2024
-
Abstract
- Co-resident attacks are serious security threats in multi-tenant public cloud platforms. They are often implemented by building side channels between virtual machines (VMs) hosted on the same cloud server. Traditional defense methods are troubled by the deployment cost. The existing tenant classification methods can hardly cope with the real dataset that is quite large and extremely unevenly distributed, and may have problems in the processing speed considering the computation complexity of the DBSCAN algorithm. In this paper, we propose a novel co-resident attack defense strategy which solve these problems through an improved and efficient multi-level clustering algorithm and semi-supervised classification method. We propose a novel multi-level clustering algorithm which can efficiently reduce the complexity, since only a few parameter adjustments are required. Built on the proposed clustering algorithm, a semi-supervised classification model is designed. The experimental results of the classification effect and training speed show that our model achieves F-scores of over 85% and is significantly faster than traditional SVM classification methods. Based on the classification of unlabeled tenants into different security groups, the cloud service provider may modify the VM placement policy to achieve physical isolation among different groups, reducing the co-residency probability between attackers and target tenants. Experiments are conducted on a large-scale dataset collected from Azure Cloud Platform. The results show that the proposed model achieves 97.86% accuracy and an average 96.06% F-score, proving the effectiveness and feasibility of the proposed defense strategy. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20799292
- Volume :
- 13
- Issue :
- 16
- Database :
- Complementary Index
- Journal :
- Electronics (2079-9292)
- Publication Type :
- Academic Journal
- Accession number :
- 179383042
- Full Text :
- https://doi.org/10.3390/electronics13163273