Back to Search Start Over

Idempotent multipliers of Figà-Talamanca-Herz algebras.

Authors :
Karimi, Ahmad
Choonkil Park
Source :
International Journal of Nonlinear Analysis & Applications; Jan2025, Vol. 16 Issue 1, p371-376, 6p
Publication Year :
2025

Abstract

For a locally compact group G and p ∈ (1,8), let Bp(G) is the multiplier algebra of the Figà-Talamanca-Herz algebra Ap(G). For p = 2 and G amenable, the algebra B(G) := B2(G) is the usual Fourier-Stieltjes algebra. In this paper, we show that Ap(G) is a Bochner-Schoenberg-Eberlin (BSE) algebra and every clopen subset of G is a synthetic set for Ap(G). Furthermore, we characterize idempotent elements of the Banach algebra Bp(G). This result generalizes the Cohen-Host idempotent theorems for the case of Figà-Talamanca-Herz algebras. Characterization of idempotent elements of Bp(G) is of paramount importance to study homomorphisms in Figà-Talamanca-Herz algebras. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20086822
Volume :
16
Issue :
1
Database :
Complementary Index
Journal :
International Journal of Nonlinear Analysis & Applications
Publication Type :
Academic Journal
Accession number :
179427866
Full Text :
https://doi.org/10.22075/ijnaa.2023.28296.3854