Back to Search
Start Over
Idempotent multipliers of Figà-Talamanca-Herz algebras.
- Source :
- International Journal of Nonlinear Analysis & Applications; Jan2025, Vol. 16 Issue 1, p371-376, 6p
- Publication Year :
- 2025
-
Abstract
- For a locally compact group G and p ∈ (1,8), let Bp(G) is the multiplier algebra of the Figà-Talamanca-Herz algebra Ap(G). For p = 2 and G amenable, the algebra B(G) := B2(G) is the usual Fourier-Stieltjes algebra. In this paper, we show that Ap(G) is a Bochner-Schoenberg-Eberlin (BSE) algebra and every clopen subset of G is a synthetic set for Ap(G). Furthermore, we characterize idempotent elements of the Banach algebra Bp(G). This result generalizes the Cohen-Host idempotent theorems for the case of Figà-Talamanca-Herz algebras. Characterization of idempotent elements of Bp(G) is of paramount importance to study homomorphisms in Figà-Talamanca-Herz algebras. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20086822
- Volume :
- 16
- Issue :
- 1
- Database :
- Complementary Index
- Journal :
- International Journal of Nonlinear Analysis & Applications
- Publication Type :
- Academic Journal
- Accession number :
- 179427866
- Full Text :
- https://doi.org/10.22075/ijnaa.2023.28296.3854