Back to Search
Start Over
MFCF-Gait: Small Silhouette-Sensitive Gait Recognition Algorithm Based on Multi-Scale Feature Cross-Fusion.
- Source :
- Sensors (14248220); Sep2024, Vol. 24 Issue 17, p5500, 15p
- Publication Year :
- 2024
-
Abstract
- Gait recognition based on gait silhouette profiles is currently a major approach in the field of gait recognition. In previous studies, models typically used gait silhouette images sized at 64 × 64 pixels as input data. However, in practical applications, cases may arise where silhouette images are smaller than 64 × 64, leading to a loss in detail information and significantly affecting model accuracy. To address these challenges, we propose a gait recognition system named Multi-scale Feature Cross-Fusion Gait (MFCF-Gait). At the input stage of the model, we employ super-resolution algorithms to preprocess the data. During this process, we observed that different super-resolution algorithms applied to larger silhouette images also affect training outcomes. Improved super-resolution algorithms contribute to enhancing model performance. In terms of model architecture, we introduce a multi-scale feature cross-fusion network model. By integrating low-level feature information from higher-resolution images with high-level feature information from lower-resolution images, the model emphasizes smaller-scale details, thereby improving recognition accuracy for smaller silhouette images. The experimental results on the CASIA-B dataset demonstrate significant improvements. On 64 × 64 silhouette images, the accuracies for NM, BG, and CL states reached 96.49%, 91.42%, and 78.24%, respectively. On 32 × 32 silhouette images, the accuracies were 94.23%, 87.68%, and 71.57%, respectively, showing notable enhancements. [ABSTRACT FROM AUTHOR]
- Subjects :
- DEEP learning
SILHOUETTES
ALGORITHMS
RECOGNITION (Psychology)
PIXELS
Subjects
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 24
- Issue :
- 17
- Database :
- Complementary Index
- Journal :
- Sensors (14248220)
- Publication Type :
- Academic Journal
- Accession number :
- 179646442
- Full Text :
- https://doi.org/10.3390/s24175500