Back to Search
Start Over
Failure-Distribution-Dependent H ∞ Fuzzy Fault-Tolerant Control for Nonlinear Multilateral Teleoperation System with Communication Delays.
- Source :
- Electronics (2079-9292); Sep2024, Vol. 13 Issue 17, p3454, 25p
- Publication Year :
- 2024
-
Abstract
- In practice, the time-varying communication delays and actuator failures are the main inevitable issues in nonlinear multilateral teleoperation systems, which can reduce the performance and stability of the considered systems. This article proposed a novel failure-distribution-dependent H ∞ fuzzy fault-tolerant control scheme to realize position synchronization and force tracking simultaneously for multilateral teleoperation systems. Firstly, the nonlinear multilateral systems were modeled as a kind of T-S fuzzy systems with multiple time-varying delays. Then, based on the distribution characteristic of failures, by introducing a series of tradeoff coefficients, a novel failure-distribution-dependent fault-tolerant control algorithm was provided to ensure force tracking in spite of failures, and the purpose of position synchronization was achieved (not only the master and slave robot position synchronization but also the position synchronization between each slave robot). Finally, a numerical simulation example was given to show the effectiveness of the proposed method. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20799292
- Volume :
- 13
- Issue :
- 17
- Database :
- Complementary Index
- Journal :
- Electronics (2079-9292)
- Publication Type :
- Academic Journal
- Accession number :
- 179646964
- Full Text :
- https://doi.org/10.3390/electronics13173454