Back to Search Start Over

Assessment of the Restoration Potential of Forest Vegetation Coverage in the Alxa Desert Region of China.

Authors :
Pan, Yanlin
Zhou, Dongmeng
Si, Jianhua
Jia, Bing
Source :
Plants (2223-7747); Sep2024, Vol. 13 Issue 17, p2536, 14p
Publication Year :
2024

Abstract

To scientifically evaluate the sustainability of tree planting and afforestation in the Alxa Desert region, this study, grounded in the principles of water balance within the natural water cycle, employed multi-source remote sensing products and ground-based measurements to construct a quantitative response relationship model. This model links evapotranspiration (ET) with meteorological variables and the Enhanced Vegetation Index (EVI). Furthermore, the study estimated the recovery thresholds and potential of forest and grassland vegetation coverage in the Alxa Desert region under various precipitation scenarios. The findings reveal that ET exhibited an increasing trend in 84.17% of the Alxa Desert region, with a significant increase observed in 61.53% of the area, indicating positive outcomes from the implementation of the Three-North Shelterbelt Forest Program. Notably, however, ET in the southeastern plain region demonstrated a decreasing trend, which is strongly associated with human activities. The response relationship model demonstrated that linear relationship areas constituted 47.52%, while nonlinear relationship areas accounted for 45.51% of the total. The overall model exhibited an R<superscript>2</superscript> value of 0.69, indicating a high level of predictive accuracy. Analysis of forest and grassland coverage revealed that, under wet year scenarios, the vegetation coverage showed a significant trend of recovery, with an average recovery threshold of (75.4 ± 12.5)% and an average recovery potential of (8.5 ± 3.6)%. It is noteworthy that the vegetation coverage in 31.25% of the area had already surpassed the recovery threshold. The outcomes of this study provide a theoretical foundation for the formulation of more scientifically rigorous ecological restoration strategies in the future. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22237747
Volume :
13
Issue :
17
Database :
Complementary Index
Journal :
Plants (2223-7747)
Publication Type :
Academic Journal
Accession number :
179647785
Full Text :
https://doi.org/10.3390/plants13172536