Back to Search
Start Over
Natural Water Sources and Small-Scale Non-Artisanal Andesite Mining: Scenario Analysis of Post-Mining Land Interventions Using System Dynamics.
- Source :
- Water (20734441); Sep2024, Vol. 16 Issue 17, p2536, 23p
- Publication Year :
- 2024
-
Abstract
- Small-scale open-pit, non-artisanal mining of low-value ores is an understudied practice despite its widespread occurrence and potential impact on freshwater resources due to mining-induced land-use/cover changes (LUCCs). This research investigates the long-term impacts of andesite mining in Pasuruan, Indonesia, on the Umbulan Spring's water discharge within its watershed. System Dynamics (SD) modeling captures the systemic and systematic impact of mining-induced LUCCs on discharge volumes and groundwater recharge. Agricultural and reservoir-based land reclamation scenarios then reveal post-mining temporal dynamics. The no-mining scenario sees the spring's discharge consistently decrease until an inflection point in 2032. With mining expansion, reductions accelerate by ~1.44 million tons over two decades, or 65.31 thousand tons annually. LUCCs also decrease groundwater recharge by ~2.48 million tons via increased surface runoff. Proposed post-mining land interventions over reclaimed mining areas influence water volumes differently. Reservoirs on reclaimed land lead to ~822.14 million extra tons of discharge, 2.75 times higher than the agricultural scenario. Moreover, reservoirs can restore original recharge levels by 2039, while agriculture only reduces the mining impact by 28.64% on average. These findings reveal that small-scale non-artisanal andesite mining can disrupt regional hydrology despite modest operating scales. Thus, evidence-based guidelines are needed for permitting such mines based on environmental risk and site water budgets. Policy options include discharge or aquifer recharge caps tailored to small-scale andesite mines. The varied outputs of rehabilitation scenarios also highlight evaluating combined land and water management interventions. With agriculture alone proving insufficient, optimized mixes of revegetation and water harvesting require further exploration. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20734441
- Volume :
- 16
- Issue :
- 17
- Database :
- Complementary Index
- Journal :
- Water (20734441)
- Publication Type :
- Academic Journal
- Accession number :
- 179647964
- Full Text :
- https://doi.org/10.3390/w16172536