Back to Search Start Over

Enhancing SLAM efficiency: a comparative analysis of B-spline surface mapping and grid-based approaches.

Authors :
Kanna, B. Rajesh
AV, Shreyas Madhav
Hemalatha, C. Sweetlin
Rajagopal, Manoj Kumar
Source :
Applied Intelligence; Nov2024, Vol. 54 Issue 21, p10802-10818, 17p
Publication Year :
2024

Abstract

Environmental mapping serves as a crucial element in Simultaneous Localization and Mapping (SLAM) algorithms, playing a pivotal role in ensuring the accurate representation necessary for autonomous robot navigation guided by SLAM. Current SLAM systems predominantly rely on grid-based map representations, encountering challenges such as measurement discretization for cell fitting and grid map interpolation for online posture prediction. Splines present a promising alternative, capable of mitigating these issues while maintaining computational efficiency. This paper delves into the efficiency disparities between B-Spline surface mapping and discretized cell-based approaches, such as grid mapping, within indoor environments. B-Spline Online SLAM and FastSLAM, utilizing Rao-Blackwellized Particle Filter (RBPF), are employed to achieve range-based mapping of the unknown 2D environment. The system incorporates deep learning networks in the B-Spline curve estimation process to compute parameterizations and knot vectors. The research implementation utilizes the Intel Research Lab benchmark dataset to conduct a comprehensive qualitative and quantitative analysis of both approaches. The B-Spline surface approach demonstrates significantly superior performance, evidenced by low error metrics, including an average squared translational error of 0.0016 and an average squared rotational error of 1.137. Additionally, comparative analysis with Vision Benchmark Suite demonstrates robustness across different environments, highlighting the effectiveness of B-Spline SLAM for real-world applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0924669X
Volume :
54
Issue :
21
Database :
Complementary Index
Journal :
Applied Intelligence
Publication Type :
Academic Journal
Accession number :
179690830
Full Text :
https://doi.org/10.1007/s10489-024-05776-5