Back to Search Start Over

High radiative forcing climate scenario relevance analyzed with a ten-million-member ensemble.

Authors :
Sarofim, Marcus C.
Smith, Christopher J.
Malek, Parker
McDuffie, Erin E.
Hartin, Corinne A.
Lay, Claire R.
McGrath, Sarah
Source :
Nature Communications; 9/18/2024, Vol. 15 Issue 1, p1-10, 10p
Publication Year :
2024

Abstract

Developing future climate projections begins with choosing future emissions scenarios. While scenarios are often based on storylines, here instead we produce a probabilistic multi-million-member ensemble of radiative forcing trajectories to assess the relevance of future forcing thresholds. We coupled a probabilistic database of future greenhouse gas emission scenarios with a probabilistically calibrated reduced complexity climate model. In 2100, we project median forcings of 5.1 watt per square meters (5th to 95th percentiles of 3.3 to 7.1), with roughly 0.5% probability of exceeding 8.5 watt per square meters, and a 1% probability of being lower than 2.6 watt per square meters. Although the probability of 8.5 watt per square meters scenarios is low, our results support their continued utility for calibrating damage functions, characterizing climate in the 22<superscript>nd</superscript> century (the probability of exceeding 8.5 watt per square meters increases to about 7% by 2150), and assessing low-probability/high-impact futures. The probability of exceeding various climate thresholds has been calculated. While the warmest future scenario has less than a 1 percent chance of being exceeded this century, the paper discusses why such warm scenarios are still relevant. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Complementary Index
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
179711143
Full Text :
https://doi.org/10.1038/s41467-024-52437-9