Back to Search
Start Over
Error Analysis and Accuracy Improvement in Forest Canopy Height Estimation Based on GEDI L2A Product: A Case Study in the United States.
- Source :
- Forests (19994907); Sep2024, Vol. 15 Issue 9, p1536, 19p
- Publication Year :
- 2024
-
Abstract
- Various error factors influence the inversion of forest canopy height using GEDI full-waveform LiDAR data, and the interaction of these factors impacts the accuracy of forest canopy height estimation. From an error perspective, there is still a lack of methods to fully correct the impact of various error factors on the retrieval of forest canopy height from GEDI. From the modeling perspective, establishing clear coupling models between various environments, collection parameters, and GEDI forest canopy height errors is challenging. Understanding the comprehensive impact of various environments and collection parameters on the accuracy of GEDI data is crucial for extracting high-quality and precise forest canopy heights. First, we quantitatively assessed the accuracy of GEDI L2A data in forest canopy height inversion and conducted an error analysis. A GEDI forest canopy height error correction model has been developed, taking into account both forest density and terrain effects. This study elucidated the influence of forest density and terrain on the error in forest canopy height estimation, ultimately leading to an improvement in the accuracy of forest canopy height inversion. In light of the identified error patterns, quality control criteria for GEDI footprints are formulated, and a correction model for GEDI forest canopy height is established to achieve high-precision inversion. We selected 19 forest areas located in the United States with high-accuracy Digital Terrain Models (DTMs) and Canopy Height Models (CHMs) to analyze the error factors of GEDI forest canopy heights and assess the proposed accuracy improvement for GEDI forest canopy heights. The findings reveal a decrease in the corrected RMSE value of forest canopy height from 5.60 m to 4.19 m, indicating a 25.18% improvement in accuracy. [ABSTRACT FROM AUTHOR]
- Subjects :
- FOREST canopies
FOREST density
DIGITAL elevation models
QUALITY control
LIDAR
Subjects
Details
- Language :
- English
- ISSN :
- 19994907
- Volume :
- 15
- Issue :
- 9
- Database :
- Complementary Index
- Journal :
- Forests (19994907)
- Publication Type :
- Academic Journal
- Accession number :
- 180008017
- Full Text :
- https://doi.org/10.3390/f15091536