Back to Search Start Over

Spatial Variability in Soil Water-Physical Properties in Southern Subtropical Forests of China.

Authors :
Han, Lili
Wang, Chao
Meng, Jinghui
He, Youjun
Source :
Forests (19994907); Sep2024, Vol. 15 Issue 9, p1590, 15p
Publication Year :
2024

Abstract

Quantification of soil water-physical properties and their spatial variation is important to better predict soil structure and functioning, as well as associated spatial patterns in the vegetation. The provision of site-specific soil data further facilitates the implementation of enhanced land use and management practices. Using geostatistical methods, this study quantified the spatial distribution of soil bulk density (SBD), soil moisture (SM), capillary water-holding capacity (CWHC), capillary porosity (CP), non-capillary porosity (NCP), and total porosity (TP) in southern subtropical forests located at the Tropical Forest Research Center in Pingxiang City, China. A topographic map (scale = 1:10,000) was used to create a grid of l km squares across the study area. At the intersections of the grid squares, the described soil water-physical properties were measured. By calculating the coefficient of variation for each soil water-physical property, all measured soil water-physical properties were found to show moderate spatial heterogeneity. Exponential, gaussian, spherical, and linear models were used to fit the semivariograms of the measured soil water-physical properties. Across all soil water-physical properties, the range A<subscript>0</subscript> variable (i.e., the separation distance between the semivariance and the sill value) measured between 3419 m and 14,156 m. The nugget-to-sill ratio ranged from 9 to 41%, indicating variations in the level of spatial autocorrelation among the soil water-physical properties. Many of the soil water-physical properties were strongly correlated (as assessed using Pearson correlation coefficients). Spatial distribution maps of the soil water-physical properties created via ordinary kriging (OK) showed that most water-physical properties had clumped (aggregated) distributions. SBD showed the opposite spatial pattern to SM and CWHC. Meanwhile, CP and TP showed similar distributions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19994907
Volume :
15
Issue :
9
Database :
Complementary Index
Journal :
Forests (19994907)
Publication Type :
Academic Journal
Accession number :
180008071
Full Text :
https://doi.org/10.3390/f15091590