Back to Search Start Over

A Maneuver in the Trade-Off Space of Federated Learning Aggregation Frameworks Secured with Polymorphic Encryption: PolyFLAM and PolyFLAP Frameworks.

Authors :
Moshawrab, Mohammad
Adda, Mehdi
Bouzouane, Abdenour
Ibrahim, Hussein
Raad, Ali
Source :
Electronics (2079-9292); Sep2024, Vol. 13 Issue 18, p3716, 28p
Publication Year :
2024

Abstract

Maintaining user privacy in machine learning is a critical concern due to the implications of data collection. Federated learning (FL) has emerged as a promising solution by sharing trained models rather than user data. However, FL still faces several challenges, particularly in terms of security and privacy, such as vulnerability to inference attacks. There is an inherent trade-off between communication traffic across the network and computational costs on the server or client, which this paper aims to address by maneuvering between these performance parameters. To tackle these issues, this paper proposes two complementary frameworks: PolyFLAM ("Polymorphic Federated Learning Aggregation of Models") and PolyFLAP ("Polymorphic Federated Learning Aggregation of Parameters"). These frameworks provide two options to suit the needs of users, depending on whether they prioritize reducing communication across the network or lowering computational costs on the server or client. PolyFLAM reduces computational costs by exchanging entire models, eliminating the need to rebuild models from parameters. In contrast, PolyFLAP reduces communication costs by transmitting only model parameters, which are smaller in size compared to entire models. Both frameworks are supported by polymorphic encryption, ensuring privacy is maintained even in cases of key leakage. Furthermore, these frameworks offer five different machine learning models, including support vector machines, logistic regression, Gaussian naïve Bayes, stochastic gradient descent, and multi-layer perceptron, to cover as many real-life problems as possible. The evaluation of these frameworks with simulated and real-life datasets demonstrated that they can effectively withstand various attacks, including inference attacks that aim to compromise user privacy by capturing exchanged models or parameters. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20799292
Volume :
13
Issue :
18
Database :
Complementary Index
Journal :
Electronics (2079-9292)
Publication Type :
Academic Journal
Accession number :
180013212
Full Text :
https://doi.org/10.3390/electronics13183716