Back to Search Start Over

Hybrid System of Polystyrene and Semiconductor for Organic Electronic Applications.

Authors :
He, Zhengran
Bi, Sheng
Asare-Yeboah, Kyeiwaa
Source :
Processes; Sep2024, Vol. 12 Issue 9, p1944, 31p
Publication Year :
2024

Abstract

While organic semiconductors hold significant promise for the development of flexible, lightweight electronic devices such as organic thin-film transistors (OTFTs), photodetectors, and gas sensors, their widespread application is often limited by intrinsic challenges. In this article, we first review these challenges in organic electronics, including low charge carrier mobility, susceptibility to environmental degradation, difficulties in achieving uniform film morphology and crystallinity, as well as issues related to poor interface quality, scalability, and reproducibility that further hinder their commercial viability. Next, we focus on reviewing the hybrid system comprising an organic semiconductor and polystyrene (PS) to address these challenges. By examining the interactions of PS as a polymer additive with several benchmark semiconductors such as pentacene, rubrene, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene), 2,8-difluoro-5,11-bis(triethylsilylethynyl) anthradithiophene (diF-TES-ADT), and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C<subscript>8</subscript>-BTBT), we showcase the versatility of PS in enhancing the crystallization, thin film morphology, phase segregation, and electrical performance of organic semiconductor devices. This review aims to highlight the potential of an organic semiconductor/PS hybrid system to overcome key challenges in organic electronics, thereby paving the way for the broader adoption of organic semiconductors in next-generation electronic devices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22279717
Volume :
12
Issue :
9
Database :
Complementary Index
Journal :
Processes
Publication Type :
Academic Journal
Accession number :
180014322
Full Text :
https://doi.org/10.3390/pr12091944